^{実習! dsPIC基板で始めるディジタル信号処理} 再生デバイスの調整

録音デバイスの調整

USBオーディオの音をUSBオーディオで観察する

SoftOscillo2 Standard Edition(*)から音を出す

(*)配布USBメモリに収録。serial no. 0581-3932-3851

Trouble.html

dsPIC書き込みには新ソフトdspicguy64を使います

書籍で使っている"dspicguy.exe"はWindows Vista/7の64ビット版OSでは動きません "dspicguy64.exe"は64ビットでも32ビットでも動きます

新ダウンロードアプリケーション dspicguy64.exeを使う

① 配布したUSBメモリのセミナCDR¥dspicguy64ディレクトリのdspicguy64.exeを実行する	⁷ ② COMポートを選	尺する
dspiceuy64 7ァイル① 編集① 表示公 お気に入り④ ツール① ヘルプ④ で あ ・ ・ ・	84 dspiceuy64 v0.1 COMボート Hexファイル 16 17 17 18 19 20 × ハルプ	COMの番号はデバイスマネージャで調べる プログラムとファイルの検索」を選択し、"sysdm.cpl"と入 」すると「システムのプロパティ」が現れる。「ハードウエ ア」タブの「デバイスマネージャ」をクリックし、ポート (COMとLPT)からそれらしきものを見つける。 たりの場合はの「スタート」から「ファイル名を指定して実 行」でsysdm.cpl
③ HEXDrdルを開く から信号処 64 dspiceuy64 v0.1 wind Settimes wind Network COMMボート 15 mind HexDrd/Nを開く HexDrd/Nを開く Prd/No場所() Moving Average Woving Average ************************************	④ ダウンロードボタンをクリック ※4 dspicguy64 v0.1 「COMポート 「」」 Hexファイルを開、 ダウンロード ハルブ	<image/> <complex-block><complex-block><complex-block><complex-block><text></text></complex-block></complex-block></complex-block></complex-block>
		COMポートは正しいか JP1のジャンパは2と3に配置されているか

MovingAverageプロジェクトを焼いた時の入出力

赤色が入力。1kHzのサイン波。

レチャネル・

書籍17ページ~ 基板とSoftOscillo2でやっていること

信号の流れ

F得を測る手段は2通りある

白色雑音をFFTしてみる

係数を変えるだけであらゆる特性を実現できる

StaticAdaptiveプロジェクトのソース

]			void CooffinitBrf() { // FIP刑BPEの係粉た
		void CoeffinitBpt() { / / FIK空BPFの係剱を代入 (1) いっついしった通オフィルタ)	(4) (1kHz~2kHzを力ットするフィルタ)
void CoeffInitLpf() { // FIR型LPFの係数を代入	void CoeffInitHpf() { // FIR型HPFの係数	(TKHZ~ZKHZを通9 ノイルタ)	//Generated by DSPL inks
(1kHz以下を通すフィルタ)	を代入(2kHz以上を通すフィルタ)	// Generated by DSPLINKS	
//Generated by DSPLinks	//Generated by DSPLinks		//Domoz Algorithm PPE
//U_4	//U_11		//Remeling Evenuency = 2,0000
//Remez Algorithm LPF	//Remez Algorithm HPF	//Sampling Frequency = 28800.0	// Sampling Frequency – 2 000.0
//Sampling Frequency = 28800.0	//Sampling Frequency = 28800.0	//cutoff1 = 550.0000000	7/cutom I = 550.000000000000000000000000000000000
//cutoff1 = 1100.0000000	//cutoff1 = 1100.0000000	//cutoff2 = 950.0000000	7/cutom2 = 950.00000000000000000000000000000000000
//cutoff2 = 190 0.0000000	//cutoff2 = 1900.0000000	//cutoff3 = 210 0.0000000	//cutoff3 = 210 0.0000000
//Tap Count = 127	//Tap Count = 127	//cutoff4 = 250 0.0000000	//cutoff4 = 2500.0000000000000000000000000000000000
//attenuate = -80.00	//attenuate = -80.00	//Tap Count = 127	// Tap Count = 127
//ripple factor = 0.1000000	//ripple factor = 0.1000000	//attenuate = -55.00	//attenuate = -55.00
//Quantized by 16 [bits]	//Quantized by 16 [bits]	//ripple factor = 0.3000000	//ripple factor = 0.3000000
Coeff[0] = -3 ;	Coeff[0] = 52 ;	//Quantized by 16 [bits]	//Quantized by 16 [bits]
Coeff[1] = -4 ;	Coeff[1] = -12 ;	Coeff[0] = 48 ;	Coeff 0] = -25 ;
Coeff[2] = -6 ;	Coeff[2] = -14 ;	Coeff[1] = -56 ;	Coeff [1] = 326 ;
Coeff[3] = -8 ;	Coeff[3] = -17 ;	Coeff[2] = -10 ;	Coeff[2] = -512 ;
Coeff[4] = -11 ;	Coeff[4] = -19 ;	Coeff[3] = 26 ;	Coeff[3] = -7 ;
Coeff[5] = -14 ;	Coeff[5] = -21 ;	Coeff[4] = 61 ;	Coeff[4] = 242 ;
Coeff[6] = -15 ;	Coeff[6] = -20 ;	Coeff[5] = 95 ;	Coeff[5] = 277 ;
Coeff[7] = -16 ;	Coeff[7] = -16 ;	Coeff[6] = 123 ;	Coeff[6] = 216 ;
Coeff[8] = -15 ;	Coeff[8] = -9 ;	Coeff[7] = 140 ;	Coeff[7] = 132 ;
Coeff[9] = -12 :	Coeff[9]= 0 :	Coeff[8] = 140 ;	Coeff[8] = 59 ;
Coeff[10] = -6	Coeff 10] = 12	Coeff[9] = 117 ;	Coeff[9] = 9 ;
Coeff[11] = 1 :	Coeff[11] = 24	Coeff[10] = 69 ;	Coeff[10] = -11 ;
Coeff[12] = 11 :	Coeff[12] = 36	Coeff[11] = 1 ;	Coeff[11] = -4 ;
Coeff 13] = 22	Coeff $\begin{bmatrix} 13 \\ 1 \end{bmatrix} = 44$	Coeff[12] = -77 ;	Coeff[12] = 28 ;
, , ,	, , , , , , , , , , , , , , , , , , ,	Coeff[13] = -156 ;	Coeff[13] = 80 ;
\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown
Lch: Main: 10Hz Averaging Finished. 5420-21870 NH DES 5420-201	Lcht: Main. 10Hz THD:6399.218709 4.Veraging Finished. +N:1051.47235%	Lcht Main: 01Hz THD:6399.21870 Averaging Finished. +N-1170.3198.21870	Averaging Finished.
SN:-20,5dB Rch Main: 0Hz	-50dB SN: -20,4dB Rohi Main OHz	-50dB	- SNL-21 - S0dB Rchi Main (
HD 6399.218709 +N 2262.92738% Stur 7.049	+N/359/61328% SN: -11.1dB	1HD6399,21870 	+NU3998 SN-12/

StaticAdaptiveプロジェクトの周波数特性(青色)

10

入出力はポインタ(アドレス) で指定

●音楽に重畳したノイズを消してみよう

FirFuncプロジェクト(*)でclassic_a_hinz.wavを再生

127次FIRフィルタでは、高域ノイズが大幅に
減衰している

(*)最新のC30コンパイラ(v3.31)にはバグがある模様。 このプロジェクトはうまく動作しません

頒布USBメモリにあるv3.30bを使ってください。また microchip.comのアーカイブにv3.30cがあります。

出力を1個計算

構造体もポインタ(アドレス)で指定

書籍62ページ~

DSPLinksで得た係数をIIRTransposed関数で使う

lirTranFuncプロジェクトの周波数特性

●DSPLinksを立ち上げてカットオフ周波数を変える

(書籍155ページ参考)

右クリック→Open a monitorで特性を見る。

< 戻る(B)

次へ(N)>

キャンセル

ヘルプ

(*) このデバイス(dsPIC30F2012)においてFFTは64ポイントが限 界のようです。128ポイントではメモリサイズオーバになります。

●SoftOscillo2のディレクトリにいろいろなWAVEファイ ルがあるので、再生してスペクトルを見てみましょう。

クイズ① 1kHzの矩形波のスペクトルはどうなるでしょうか?

(ヒント) sq1k.wavを再生してみましょう。

(ヒント) トレーニング基板のSW1を押さないと0Hz~3750Hz、 押すと4000Hz~7750Hzが表示されます。

(*)LCDの表示がおかしい時はジェネレータのボリュームを 調整してみましょう

クイズ② 1kHzの三角波のスペクトルはどうなるでしょうか?

(ヒント) tri1k.wavを再生してみましょう。

クイズ③ 1kHzののこぎり波のスペクトルはどうなるでしょうか?

(ヒント) saw1k.wavを再生してみましょう。

クイズ③ 白色雑音のスペクトルはどうなるでしょうか?

(ヒント) whitenoise.wavを再生してみましょう。

●AutoCorrプロジェクトをdsPICに書き込みましょう

(*)MPLAB+C30のバージョンアップにより、書籍CD-ROMのソースでは動か なくなりました。頒布USBメモリの「アップグレード」にあるAutoCorr.cを使ってく ださい。

●classic_a_hinz.wavを入力し、写真4-1(書籍 108ページ)の様になるか確認。

LPFに切り替わったときのスペクトル分布(青が出力)

●LmsFuncプロジェクトをdsPICに書き込む

●sin1kwn.wav, sin3kwn.wav, sin300wn.wav, sq1kwn.wavを 再生し、図4-7~4-10の様になるか確認。

(これらwaveファイルは付録CD-ROMのSoftOscillo2¥Soundディレクトリにあります)

その他お役立ち情報

●パソコンとシリアル通信するには

第5章「マルチレート信号処理」では、パソコンからのコマンドを 受ける→パソコンヘデータをアップロードする、といった双方向 のシリアル通信をしています(InterpFuncプロジェクトなど)。 また、Windows側アプリのソース(InterpMonなど、Visual C++ 2008プロジェクト)も付属CD-ROMに収録しています。

(*)MPLAB+C30のパージョンアップにより、書籍CD-ROMのソースでは動かなくなり ました。頒布USBメモリの「アップグレード」にあるInterpFunc.cを使ってください。

(*)なぜか赤色LEDが点灯したままですが、問題なく通信できます。

●サンプリング周波数を変更するには

AutoCorrプロジェクトではA-Dのサンプリング、PWMの キャリアを16kHzにしています。他のプロジェクト (MovingAverageなど)は28.8kHzなので、それらとの違い を確認しましょう。

●その他ご不明な点は・・・

筆者Webサイト http://digitalfilter.com に書籍のサポートサイトがあります。掲示板もありますのでぜひご利用下さい。

●さらなるステップアップに・・・

D-Aコンバータ内蔵の高性能なdsPIC33FJ128GP804を搭載した基板!

dsPIC30F2012と比べると桁外れにパワフル!

	dsPIC33FJ128GP804	dsPIC30F2012
プログラムメモリ	128 kByte	12 kByte
データRAM	16 kByte	1 kByte
ピン数(内I/O)	44 (35)	28 (20)
A/Dコンバータ	12bit @500kHz	12bit @200kHz
D/Aコンパータ	16bit @100kHz	なし
DMA チャネル数	8	なし
電源電圧範囲	3.0V∼3.6V	2.5V∼5.5V

http://digitalfilter.comでお買い求めいただけます(¥22,200)。